PREFERENCE BALLOT

A preference ballot is a ballot in which the voter ranks the choices in _____

•

Example

A group of friends is deciding on a movie to watch for their monthly movie night. They have three options: Action (A), Comedy (C), and Drama (D). Here are their preferences:

	Alice	Bob	Lisa	Dave	Eric	Fiona	Greg	Hannah	Ian	Jessica	
1st choice	A	A	C	D	C	C	D	D	A	A	
2nd choice	C	C	A	C	D	D	A	A	C	C	
3rd choice	D	D	D	A	A	A	C	C	D	D	
	A	ctio	n (A)) Co	omed	ly (C)	Dran	na (D)			
1st choic	e	4	4			3		3			
2nd choi	ce		3			5	4	2			
3rd choic	ce		3			2	!	5			

Plurality Method

In this method, the choice with the most first-preference votes is declared the winner.

Plurality Method

3rd choice

In this method, the choice with the most first-preference votes is declared the winner. Ties are possible, and would have to be settled through some sort of run-off vote.

	Alice	Bob	Lisa	Dave	Eric	Fiona	Greg	Hannah	Ian	Jessica
1st choice	A	A	C	D	C	C	D	D	A	A
2nd choice	C	C	A	C	D	D	A	A	C	C
3rd choice	D	D	D	A	A	A	C	C	D	D
	A	ctio	n (A)) Co	omed	ly (C)	Drai	na (D)		
1st choice	e		4			3		3		
2nd choic	ce		3			5		2		

Action (A) won 4 out of 10 votes: It won in the plurality method but not majority

Question What's Wrong with Plurality? In a student council election, three candidates are 1st choice vying for the position of president: Alex (A), 2nd choice Brooke (B), and Chris (C). The voting schedule is 3rd choice provided below. Who wins under the plurality method? 32 20 10 20 40 Anaheim vs Orlando: 7 out of the 10 would prefer 1st A B C C A Anaheim over Orlando 2nd B C B A C 3rd C A A B B Anaheim vs Hawaii: 6 out of 10 would prefer Hawaii over Anaheim Alex (A) Brooke (B) Chris (C) This doesn't seem right, does it? Anaheim just won the 1st choice election, yet 6 out of 10 voters, 60% of them, would 2nd choice 3rd choice have preferred Hawaii! Condorcet Criterion FAIRNESS CRITERIA (Marquis de Condorcet) The fairness criteria are statements that If there is a choice that is preferred in every one-to-one comparison with the seem like they _____ other choices, that choice should be the winner. We call this winner the _____ , or ____

3 3

Question

In a potluck party, attendees are voting for their preferred dish to be included in the menu. The options are Lasagna (LA), Tacos (TA), and Sushi (SU). Here's the preference schedule:

```
1 3 3 3
1st choice LA LA TA SU
2nd choice TA SU LA TA
3rd choice SU TA LA LA
```

```
Lasagna (LA) vs Tacos (TA): ______ voters prefer
Lasagna (LA) vs Sushi (SU): _____ voters prefer
Tacos (TA) vs Sushi (SU): ____ voters prefer
```

_____ is the Condorcet winner

Example

Let's consider a university student government election in a campus with a diverse student body. In this election, there are three candidates: Sarah and Mike, both representing progressive ideologies, and Emily, a conservative candidate. The preference schedule for the votes looks as follows:

```
375 245 234
1st choice Emily Sarah Mike
2nd choice Sarah Mike Sarah
3rd choice Mike Emily Emily
```

We can see a total of 854 voters participated in this election. Computing the percentage of first-place votes: Sarah: ____/854 = 28.7% Mike: ____/854 = 27.4% Emily: ____/854 = 43.9%

So in this election, the progressive voters split their votes between Sarah and Mike, allowing the conservative candidate Emily to win under the plurality method with 43.9% of the vote.

Example

Let's consider a scenario where a group of friends is voting for the destination of their next vacation. The options are Paris (PA), Rome (RO), and Tokyo (TO). Here's the preference schedule:

```
1 3 3 3
1st choice PA PA PA TO
2nd choice RO TO RO PA
3rd choice TO RO TO RO
```

Paris (PA) vs Rome (RO): __out of 10 voters prefer Paris over Rome.
Paris (PA) vs Tokyo (TO): __ out of 10 voters prefer Paris over Tokyo.
Rome (RO) vs Tokyo (TO): __ out of 10 voters prefer Rome over Tokyo.
Based on these comparisons, Paris (PA) emerges as the Condorcet winner since it is preferred over both Rome and Tokyo in head-to-head matchups.

Example

```
375 245 234
1st choice Emily Sarah Mike
2nd choice Sarah Mike Sarah
3rd choice Mike Emily Emily
```

We can see a total of 854 voters participated in this election. Computing the percentage of first-place votes: Sarah: $__$ /854 = 28.7% Mike: /854 = 27.4% Emily: /854 = 43.9%

So in this election, the progressive voters split their votes between Sarah and Mike, allowing the conservative candidate Emily to win under the plurality method with 43.9% of the vote.

However, analyzing this election closer, we see that it violates the _______. Analyzing the one-to-one comparisons:Emily vs Sarah: 375 prefer Emily; 479 prefer Sarah: Sarah is preferred Emily vs Mike: 375 prefer Emily; 479 prefer Mike: Mike is preferred Sarah vs Mike: 620 prefer Sarah; 234 prefer Mike: Sarah is preferred So even though Sarah had the smallest number of first-place votes in the election, she is the Condorcet winner, being preferred in every one-to-one comparison with the other candidates.

Question

Is there a Condorcet winner in the following?

30 20 10 40 20 30
1st choice A A B C C B
2nd choice B C C B A A
3rd choice C B A A B C

Candidate A vs B:

Candidate A vs C:

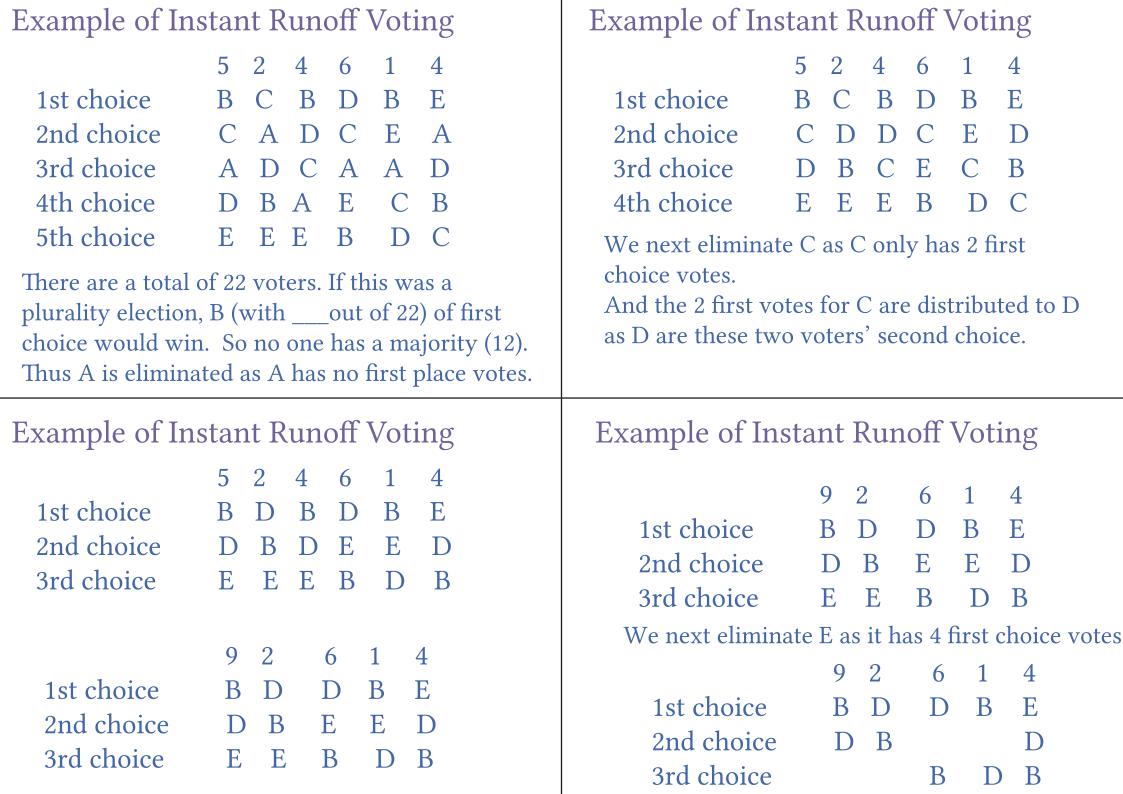
Candidate B vs C:

Example of insincere voting

Imagine a fictional election for the Student Council President at a university. There are three candidates: Alice, Bob, and Claudia. Alice and Bob are both popular candidates and have similar platforms, while Claudia is less well-known and has different views.

A group of students strongly supports Alice but realizes that if they split their votes between Alice and Bob, Claudia might win.

To prevent Claudia from winning, some of Alice's supporters decide to strategically vote for Bob instead, even though they prefer Alice, to consolidate support behind one candidate. Similarly, some of Bob's supporters may also vote for Alice instead of Bob to ensure that Claudia doesn't win.


Insincere voting

Situations when there are more than one candidate that share somewhat similar points of view, can lead to insincere voting. Insincere voting is when a person casts a ballot ______

Instant Runoff Voting

with Elimination, is a modification of the plurality method that attempts to address the issue of ______. In IRV, voting is done with preference ballots, and a preference schedule is generated. The choice with the least first-place votes is then eliminated from the election, and any votes for that candidate are redistributed to the voters' next choice. This continues until a choice has a majority (over 50%).

(IRV can violate the Condorcet Criterion)

Example of Instant Runoff Voting

9 2 6 1 4
1st choice B D D B D
2nd choice D B B D B

10 12

1st choice B D

2nd choice D B

Thus D wins

Question

Number of voters 3 10 5 1 13 8 22
1st choice W W C C D X W
2nd choice X C W X X C D
3rd choice C D X D W D C
4th choice D X D W C W X

How many voters voted in this election?

How many first place votes are needed for a majority?

Which candidate/choice had the most first-place votes?

Which candidate/choice has the least first-place votes?

Which candidate/choice had the most last-place votes?

Which candidate/choice has the least last-place votes?

Question

Number of voters 8 13 12 7 12 7
1st choice B C A A B D
2nd choice A A D B C C
3rd choice C D B D D B
4th choice D B C C A A

Find the winner of this election under the plurality method.

Question

If there are 3 candidates in an election with a total of 25 votes, what is the minimum number of first-place votes a candidate could win with under the Plurality method?

MONOTONICITY CRITERION

If voters change their votes	
, it should not	
· · · · · · · · · · · · · · · · · · ·	
(Improve or stay the same)	

Suppose there are 3 candidates, and 100 votes cast. The number of votes required to win is therefore 51. Suppose the votes are cast as follows in an IRV election.

Number of ballots	1st Preference	2nd Preference
39	Andrew	Belinda
35	Belinda	Carly
26	Carly	Andrew

Carly is eliminated as Carly has 26 first place votes.

Number of ballots	1st Preference	2nd Preference
39	Andrew	Belinda
35	Belinda	
26		Andrew

So Andrew wins (39+26=65) to Belinda's 35

Suppose there are 3 candidates, and 100 votes cast. The number of votes required to win is therefore 51. Suppose the votes are cast as follows in an IRV election.

Number of ballots	1st Preference	2nd Preference
39	Andrew	Belinda
35	Belinda	Carly
26	Carly	Andrew

Now suppose 10 Belinda voters drop their support for her and rank Andrew first instead.

Number of ballots	1st Preference	2nd Preference
49	Andrew	Belinda
25	Belinda	Carly
26	Carly	Andrew

Now suppose 10 Belinda voters drop their support for her and rank Andrew first instead.

Number of ballots	1st Preference	2nd Preference
49	Andrew	Belinda
25	Belinda	Carly
26	Carly	Andrew
Belinda has the least f	irst voters and is	eliminated

Number of ballots	1st Preference	2nd Preference
49	Andrew	
25		Carly
26	Carly	Andrew

This time Carly now has 51 votes and wins over Andrew, despite Andrew receiving 10 of Belinda's votes.

Example of Borda Count 9 2 6 1 4 1st choice B D D B E 2nd choice D B E E D 3rd choice E E B D B 1st choice B D D B 9 2 6 1 4 B D B 1st choice B D B E 2nd choice B D D B E --9 --2 --6 --1 --4 3rd choice E E B D B --9 --2 --6 --1 --4

Example of Borda Count

9 2 6 1 4

1st choice B D D B E

27 6 18 3 12

2nd choice D B E E D

18 4 12 2 8

3rd choice E E B D B

9 2 6 1 4

B: 27 + 4 + 6 + 3 + 4 = 44 D: 18 + 6 + 18 + 1 + 8 = 51

E: 9 + 2 + 12 + 2 + 12 = 37

Under the Borda count method,

Note that B had more first choice

a choice with a majority of first

voters over D but lost. In the Borda count, it can even be the case that

is the winner.

place counts loses.

is the winner.

MAJORITY CRITERION

If a choice has a majority of first-place votes, that choice should be the winner.

Copeland's Method

The Copeland method satisfies the Condorcet Criterion, Majority Criterion and Monotonicity Criterion.

Example

Number of voters 8 13 12 7 12 7
1st choice B C A A B D
2nd choice A A D B C C
3rd choice C D B D D B
4th choice D B C C A A

A:2 points, B:1 point, C: 2 points, D: 1 point, so A & D tie

Example

C has 2 points

D has 1 ½ points

In a school election for student council president, four candidates are competing: Alex (A), Beth (B), Chris (C), and Diana (D). The votes are cast as follows:

5 4 6 3
A vs B: 14 votes to 4 votes, __ gets 1 point

1st choice A B C D
A vs C: 8 votes to 10 votes, __ gets 1 point

2nd choice B C D A
A vs D: 5 votes to 13 votes, __ gets 1 point

3rd choice C D A B
B vs C: 12 votes to 6 votes, __ gets 1 point

4th choice D A B C
B vs D: 9 votes to 9 votes, __ & __ get __ point

C vs D: 15 votes to 3 votes, __ gets 1 point

A has 1 point
B has 1 ½ points
So __ wins

Example

Candidate A is then removed from the election:

5 4 6 35 4 6 31st choice ABCD1st choice BCD5 4 6 32nd choice BCDA2nd choice BCD1st choice BBCD3rd choice CDAB3rd choice CD B2nd choice CD B4th choice DABC4th choice DBC3rd choice DBC

B vs C: 13 votes to 5 votes, B gets 1 point B vs D: 9 votes to 9 votes, B & D get 1/2 point C vs D: 15 votes to 3 votes, C gets 1 point

Totaling:

B has 1 ½ points So B wins

C has 1 point D has ½ point

THE INDEPENDENCE OF IRRELEVANT ALTERNATIVES (IIA) CRITERION

If a ______ is removed from the ballot, it should not ______.

Equivalently, if choice A is preferred over choice B, introducing or removing a choice C should not cause B to be preferred over A.

So Where's the Fair Method?

At this point, you're probably asking why we keep looking at method after method just to point out that they are not fully fair. We must be holding out on the perfect method, right?

Unfortunately, no. A mathematical economist, Kenneth Arrow, was able to prove in 1949 that there is no voting method that will satisfy all the fairness criteria we have discussed.

Arrow's Impossibility Theorem

Arrow's Impossibility Theorem states, roughly, that it is not possible for a voting method to satisfy every fairness criteria that we've discussed.

Example

5 5 5

Consider the election below:

10 people prefer A to B 10 people prefer B to C 2nd choice B A C

10 people prefer C to A 3rd choice C B A

No matter whom we choose as the winner, 2/3 of voters would prefer someone else! This scenario is dubbed Condorcet's Voting Paradox, and demonstrates how voting preferences are not transitive (just because A is preferred over B, and B over C, does not mean A is preferred over C). In this election, there is no fair resolution.

It is because of this impossibility of a totally fair method that Plurality, IRV, Borda Count, Copeland's Method, and dozens of variants are all still used. Usually the decision of which method to use is based on what seems most fair for the situation in which it is being applied.

Approval Voting

With Approval Voting, the ballot asks you to ______. The results are tallied, and the option with the most approval is the winner.

Approval Voting

A group of friends is deciding on which restaurant to go to for dinner. Three options are provided, and each person is asked to mark with an "X" which restaurants they are willing to go to. The results are:

Alex Ben Cara Dan Emma Frank Gina Hannah Ian Julia

	THEA	DCII	Cara	Duii	Lillia	ranne	Oma II	aiman lan jana
Italian	X	X	X	X	X		X	X
Sushi		X		X	X		X	X X
Mexican	X		X	X	X	X	X	X X

Totaling the results, we find:

Italian received 7 approvals, Sushi received 6 approvals

Mexican received 8 approvals.

In this vote, Mexican would be the winner.

80 15 5
1st choice A B C
2nd choice B C B
3rd choice C A A

80 15 X

B X X X X C X X

Suppose that this election was held using Approval Voting, and every voter marked approval of their top two candidates. A is the winner

We will change this to approval voting where the top 2 choices are approved.

A has 80 votes, B has 100 votes and C has 20 votes, so B is the winner

Approval Voting

Mila AJ Aisha Diego Mei Sanjay Fatima Amir Ling Natasha X X X X X X

Now A has __ approvals, B has __ approvals and __ received 5.

So __ is now the winner.

Question

Use the Copeland method to find the winner of the following:

Number of Voters	10	8	14	9
1st Choice	В	C	A	D
2nd Choice	A	D	C	В
3rd Choice	C	A	D	C
4th Choice	D	В	В	A

Question

Find the Condorcet Candidate if they exist:

6	9	12
В	В	A
C	A	В
A	C	C
	B C	6 9 B B C A A C

Question

Find the winner under the IRV method:

Number of voters	10	3	7	2	9
1st choice	D	A	C	В	A
2nd choice	В	В	В	C	C
3rd choice	C	D	D	A	В
4th choice	A	C	A	D	D

Question

Find the winner under the Borda Count:

Number of voters 15 6 12 6 2
1st choice C D A B D
2nd choice A A D D B
3rd choice B C B A C
4th choice D B C C A

Question

What Fairness Criterion is violated in the following Borda count election?

		Nun	ber of	voters
Borda points	Rankings	6	3 2	
3	1st choice	F	S M	
2	2nd choice	S	M S	
1	3rd choice	M	F F	
				F:6(3)+3(1)+2(1)=23
				S:6(2)+3(3)+2(2)=25
A Majority Crite	M:6(1)+3(2)+2(3)=18			
B Monotonicity	Criterion			
C Independence	e of Irrelevant	Alte	rnatives	s Criterion
D Condorcet C	riterion			

Question

A city is voting for its next mayor, with three candidates: Candidate A, Candidate B, and Candidate C. The winning candidate under the unknown voting method is Candidate A.

However, a significant portion of the population raises

concerns about Candidate B's integrity, citing recent scandals. To address these concerns, they propose removing Candidate B from the options and holding a revote with only Candidate A and Candidate C. In the second round of voting, Candidate C emerges as the winner. Which fairness criterion has been violated in this election?

- A Majority Criterion
- B Monotonicity Criterion
- C Independence of Irrelevant Alternatives Criterion
- D Condorcet Criterion

Monotonicity Criterion

Independence of Irrelevant Alternatives Criterion

Condorcet Criterion