QUARTILES	FIVE NUMBER SUMMARY
Quartiles are values that divide the data in The first quartile (Q1) is the value so that the third quartile () is the value so that 75% of the data values are below it. You may have guessed that the second quartile is the same as the median, since the median is the value so that 50% of the data values are below it. This divides the data into quarters; 25% of the data is between the minimum and Q1, 25% is between Q1 and the median, 25% is between the median and Q3, and 25% is between Q3 and the maximum value.	The five number summary takes this form:
TO FIND THE FIRST QUARTILE, Q1	TO FIND THE THIRD
Begin by ordering the data from smallest to largest Compute the locator: L = If L is a decimal value: Round up to L+ Use the data value in the L+th position If L is a : Find the mean of the data values in the Lth and L+1th positions.	QUARTILE, Q3 Use the same procedure as for Q1, but with locator: L = 0.75n

Example Suppose a group of 10 athletes have their running speeds (in meters per second) recorded, and their speeds sorted from slowest to fastest are:

5.8, 6.2, 6.4, 6.6, 6.8, 7.0, 7.2, 7.4, 7.6, 7.8

What are the first and third quartiles of their running speeds?

 $Q1: 0.25 \times 10 = 2.5$ Rounding up, we get 3, the third position. So Q1 = 6.4 m/s

 $Q3: 0.75 \times 10 = 7.5$ Rounding up, we get 8, the eight position. So Q3 = 7.4 m/s

Question

The monthly rent paid by 24 individuals was recorded, and the amounts sorted from lowest to highest are:

\$800, \$850, \$850, \$900, \$950, \$950, \$975, \$1000, \$1025, \$1050, \$1075, \$1100, \$1125, \$1150, \$1200, \$1250, \$1300, \$1300, \$1350, \$1400, \$1450, \$1500, \$1550, \$1600

Find the 5-number summary of this data.

Example

Suppose a group of 10 athletes have their running speeds (in meters per second) recorded, and their speeds sorted from slowest to fastest are:

5.8, 6.2, 6.4, 6.6, 6.8, 7.0, 7.2, 7.4, 7.6, 7.8

What is the 5 number summary?

Median: mean of 5th and 6th position

Median = $\frac{6.8 + 7.0}{2}$ = 6.9

Min = 5.8 , Max = 7.8

Five number summary: 5.8, 6.4, 6.9, 7.4, 7.8

Example

Using the data on weekly working hours from a group of employees, create the five-number summary.

Weekly Working Hours (hours)	Frequency
30	4
35	6
40	10
45	15
50	18
55	12
60	8
65	5
The total amount of employees is the	e total sum of the

The total amount of employees is the total sum of the frequencies:

$$4 + 6 + 10 + 15 + 12 + 8 + 5 = 78$$

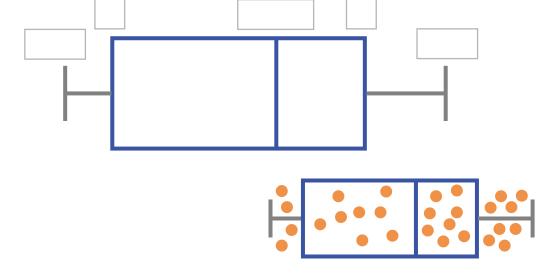
Min = 30, Max = 65

Q1: 78/4 = 19.5, rounding up we get 20. 40 hours is in the 20th position and so Q1 = 40.

Median: 78/2 = 39. The mean of the 39th and 40th position is 50. Q3: 3x78/4 = 58.5, rounding up we get 59. 55 hours is in the 59th position and so Q3 = 59.

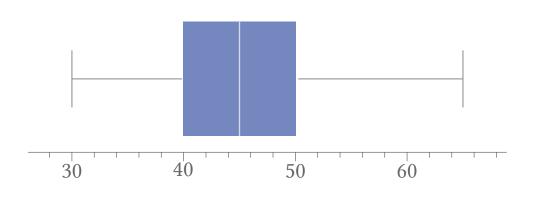
5 number summary: 30, 40, 50, 59, 65

Question


The daily caloric intake (in kilocalories) of 60 individuals was recorded, and their intake data is grouped as follows:

Calories (kcal)	Frequency	
1800		5
2000		8
2200		12
2400		15
2600		10
2800		6
3000		4

Using this data, calculate the five-number summary.


BOX PLOT

A is a graphical representation of a five-number summary.

Example

five-number summary: 30, 40, 45, 50, 65

