Annuity Formula $P_{N} = \frac{d((1 + r/k)^{Nk} - 1)}{(r/k)}$ $P_{N} \text{ is the balance in the account after N years.}$ $d \text{ is the } _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ _ $	When do you use this? Annuities assume that you put money in the account on a regular schedule (every month, year, quarter, etc.) and let it sit there earning interest.
r is the in form. k is the in one year. If the compounding frequency is not explicitly stated, assume there are the same number of compounds in a year as there are deposits made in a year.	Compound interest assumes that you put money in the account once and let it sit there earning interest. Compound interest:
	Annuity:
Example A savings plan allows you to deposit money monthly into an account that earns interest. Suppose you deposit \$150 each month into an account earning 5% annual interest, compounded monthly. How much will you have saved after 25 years?	Question You decide to save for a down payment on a house by depositing \$200 each month into a savings account that earns 4% annual interest, compounded monthly. How much will you have saved after 15 years?
Monthly deposit $d = \$150$ Annual interest rate (r): 5% ($r = 0.05$ as a decimal) Compounding periods per year $k=12$ (compounded monthly) Number of years $N = 25$	
$P_{N} = \frac{d((1 + r/k)^{Nk} - 1)}{(r/k)} P_{N} = \underline{((1 + _/_)^{x} - 1)} $	
= \$162,561	

Example A savings account pays 4% interest. If you deposit \$10 a day into this account, how much will you have after 15 years? How much of that amount is from interest? Daily deposit d= \$10 Annual interest rate (r): 4% (r = 0.04 as a decimal) Compounding periods per year k=365 (compounded daily) Number of years N = 15 $P_{N} = \frac{d((1 + r/k)^{Nk} - 1)}{(r/k)} P_{N} = \frac{((1 + //)^{-x} - 1)}{(//)^{-x}}$ $= $92,370$ Total deposits: × = \$54,750 Interest earned: \$ \$ = \$37,620	Question A retirement savings account offers 2.5% annual interest. If you deposit \$3 per day into this account, how much will you have after 8 years? How much of that total will come from interest?
Question You decide to invest \$200 each month into an account earning 5% annual interest, compounded monthly. a) How much will you have in the account after 25 years?	Example You want to save \$150,000 for a down payment on a house in 20 years. Your savings account earns 6% annual interest, compounded monthly. How much do you need to deposit each month to reach your goal?
b) How much total money will you contribute to the account?	Annual interest rate (r): 6% (r = 0.06 as a decimal) Compounding periods per year k=12 (monthly deposits) Number of years N=20 Target amount P_{20} = \$150,000 $d = (_/_)$
c) How much of the total balance will come from interest?	$P_{N} = \frac{d((1 + r/k)^{Nk} - 1)}{(r/k)} = \frac{((1 + _/_) 1)}{((1 + _/_) 1)}$ $= \frac{x(_/_)}{((1 + _/_) - x - 1)}$ $\approx 324.68

Question

You want to save \$250,000 for your child's college education in 18 years. Your investment account earns 7% annual interest, compounded monthly. How much do you need to deposit each month to reach your goal? Example

If you invest \$50 each month into an account earning 4% annual interest, compounded monthly, how long will it take for the account to grow to \$5,000?

Monthly deposit d= \$50

Annual interest rate (r): 4% (r=0.04 as a decimal) Compounding periods per year k=12 (monthly deposits) Target amount $P_N = \$5,000$ Unknown (N): Time in years $P_N = \frac{d((1 + r/k)^{Nk} - 1)}{(r/k)}$ $\frac{P_N (r/k)}{d} + 1 = (1 + r/k)^{Nk}$ $\log\left[\frac{P_N (r/k)}{d} + 1\right] = \log[(1 + r/k)^{Nk}]$ $\log\left[\frac{P_N (r/k)}{d} + 1\right] = \log[(1 + r/k)^{Nk}]$

$$\underbrace{(/)}_{N=\frac{\log\left[\frac{P_{N}(r/k) + 1}{d}\right]}{k \log(1 + r/k)}} = \frac{\log\left[\frac{5000(0.04/12) + 1}{50}\right]}{12 \log(1 + 0.04/12)} \approx 7.2$$