- 1. A new electronics store has weekly sales of smartphones that grow according to a linear model. The store sold 8 smartphones in its first week ($S_0 = 8$) and 13 smartphones in its second week ($S_1 = 13$).
 - (a) Write the recursive formula for the number of smartphones sold, S_n , in the (n + 1)th week.

$$S_n = S_{n-1} + \dots$$

(b) Write the explicit formula for the number of smartphones sold, S_n , in the (n + 1)th week.

$$S_n = \dots$$

- (c) If this pattern continues, how many smartphones will be sold in the seventh week?
- 2. A small books tore's weekly sales of books follow a linear growth pattern. The first week, the store sold 15 books ($B_0 = 15$), and the second week, it sold 20 books ($B_1 = 20$).
 - (a) Write the recursive formula for the number of books sold, B_n , in the (n + 1)th week.

$$B_n = B_{n-1} + \dots$$

(b) Write the explicit formula for the number of books sold, B_n , in the (n + 1)th week.

$$B_n = \ldots$$

- (c) Assuming this trend continues, how many books will be sold in the eighth week?
- 3. A colony of bacteria is growing according to a linear growth model. The initial population (day 0) is $B_0 = 15$, and the population after 8 days is $B_8 = 95$.
 - (a) Find an explicit formula for the bacteria population after n days.

$$B_n = \dots$$

(b) After how many days will the bacteria population reach 300?

- 4. A school of fish in a pond is growing according to a linear growth model. The initial population (month 0) is $F_0 = 20$, and the population after 5 months is $F_5 = 120$.
 - (a) Find an explicit formula for the fish population after n months.

$$F_n = \dots$$

- (b) After how many months will the fish population reach 500?
- 5. A park currently has 150 benches. To improve accessibility, the city plans to add 4 additional benches at the end of each week for the next 40 weeks.
 - (a) How many benches will the park have at the end of 25 weeks?
- 6. A neighborhood currently has 85 trees. As part of a greening initiative, the community group has decided to plant 5 additional trees at the end of each week for the next 20 weeks.
 - (a) How many trees will there be in the neighborhood at the end of 15 weeks?
- 7. In a small town, a local bakery starts with an initial production of $B_0 = 15$ loaves of bread each day. The bakery has been experiencing an exponential growth in demand, with a daily growth rate of r = 0.12.
 - (a) Then:

$$B_1 = B_2 =$$

(b) Find an explicit formula for B_n , which represents the number of loaves produced on day n.

$$B_n = \ldots$$

(c) Use your formula to find B_{10} .

 $B_{10} = \ldots$

(d) Give all answers accurate to at least one decimal place.

9. "A population of fish in a lake grows according to an exponential growth model, with $F_0 = 40$ and $F_1 = 60$. Complete the recursive formula:

$$F_n = \times F_{n-1}$$

Write an explicit formula for F_n :

$$F_n = \ldots$$

"

10.

11. "A colony of bees grows according to an exponential growth model, with $B_0 = 40$ and $B_1 = 50$. Complete the recursive formula:

$$B_n = \times B_{n-1}$$

 $B_n = \ldots$

Write an explicit formula for B_n :

"

12. Consider a population of rabbits that grows according to the recursive rule $R_n = R_{n-1} + 15$, with an initial population $R_0 = 35$.

Then:

$$R_1 = R_2 =$$

Find an explicit formula for the rabbit population. Your formula should involve n (use lowercase n).

 $R_n = \ldots$

Use your explicit formula to find R_{50} .

$$R_{50} = \dots$$

13. Consider a population of trees that grows according to the recursive rule $T_n = T_{n-1} + 10$, with an initial population $T_0 = 100$.

Then:

$$T_1 = T_2 =$$

Find an explicit formula for the tree population. Your formula should involve n (use lowercase n).

 $T_n = \ldots$

Use your explicit formula to find T_{25} .

$$T_{25} = \dots$$

14. Find the logarithm without using your calculator.

$$\log_{10}(10000) = \dots$$

15. Find the logarithm without using your calculator.

$$\log_{10}(1000) = \dots$$

16. Find the logarithm without using your calculator.

$$\log\left(\frac{1}{100000}\right) = \dots$$

17. Find the logarithm without using your calculator.

$$\log\left(\frac{1}{10000}\right) = \dots$$

18. Express the equation in exponential form.

(a)

 $\log_2 4 = 2.$

That is, write your answer in the form $2^A = B$. Then

 $A = \dots$

 $B = \ldots$

and

(b)

 $\log_5 25 = 2.$

That is, write your answer in the form $5^C = D$. Then

$$C = \ldots$$

 $\quad \text{and} \quad$

$$D = \ldots$$

19. Express the equation in exponential form.

(a) $\log_3 9 = 2$. That is, write your answer in the form $3^A = B$. Then $A = \dots$ and $B = \dots$

(b)

That is, write your answer in the form $4^C = D$. Then

and $D = \dots$

20. Solve correct to 2 decimal places.

$$4(5)^x = 11$$

 $x = \dots$

 $\log_4 16 = 2.$

 $C = \ldots$

Then

21. Solve correct to 2 decimal places.

Then

 $x = \dots$

 $3(4)^x = 15$

22. Assume there is a certain population of fish in a pond whose growth is described by the logistic equation. It is estimated that the carrying capacity for the pond is 1200 fish. Absent constraints, the population would grow by 110% per year.

If the starting population is given by $p_0 = 100$, then after one breeding season the population of the pond is given by

 $p_1 = \ldots$

After two breeding seasons the population of the pond is given by

 $p_2 = \ldots$

23. Assume there is a certain population of turtles in a lake whose growth is described by the logistic equation. It is estimated that the carrying capacity for the lake is 800 turtles. Absent constraints, the population would grow by 90% per year.

If the starting population is given by $p_0 = 50$, then after one breeding season the population of the lake is given by

$$p_1 = \ldots$$

After two breeding seasons the population of the lake is given by

 $p_2 = \ldots$

 $24. \ {\rm Let}$

$$P(t) = 30000(1.08)^t$$

be the population of a town t years after the year 2000. Estimate in which year the population will reach 55528. Year = ...

 $25. \ {\rm Let}$

$$P(t) = 25000(1.07)^t$$

be the population of a city t years after the year 2000. Estimate in which year the population will reach 45000. Year = ...

26. The current student population of Miami is 1700. The population increases at a rate of 3.1% each year. Write an exponential growth model for the future population P(x) where x is in years:

$$P(x) = \dots$$

What will the population be in 3 years? (Round to nearest student)

$$P(3) = \dots$$

27. The current population of a university is 2500. The population increases at a rate of 4.5% each year. Write an exponential growth model for the future population P(x) where x is in years:

$$P(x) = \dots$$

What will the population be in 5 years? (Round to nearest student)

$$P(5) = \dots$$

28. The current population of a university is 2500. The population increases at a rate of 4.5% each year. Write an exponential growth model for the future population P(x) where x is in years:

 $P(x) = \ldots$

What will the population be in 5 years? (Round to nearest student)

$$P(5) = \dots$$

29. The current student population of a town is 1700. The population increases at a rate of 3.1% each year. Write an exponential growth model for the future population P(x) where x is in years:

$$P(x) = \dots$$

What will the population be in 5 years? (Round to nearest student)

$$P(5) = \dots$$